COMPLEX CONJUGATION - RELATIVE TO WHAT?

ALEXANDER M. SOIGUINE
191011 St. Petersburg, Fontanka 53 #37
Russia

Abstract. Some initial, technically simple but fundamentally important statements concerning
the very origin of the notion of a complex number are formulated in terms of the Clifford (Geo-
metric) algebra generated by vectors in some geometrically and physically sensitive dimensions. A
new insight into the sense of geometrical product is given. It is shown that it makes no sense to
speak about complex numbers without identifying a corresponding two-dimensional plane. This is
particularly important if the given physical situation is set in higher dimensions. Because of great
importance of these questions in education and because of increasing use of graphical computer
programs in mathematical education and research, some components of a computer program im-
plementing the Geometric Algebra approach are outlined in terms of classes of the object-oriented
computer language C++.

Key words: Cognitive process — imaginary unit — CLICAL

1. Introduction

Teaching of mathematics has improved significantly particularly where mathemati-
cal formalism can be represented by a computer program able to manipulate sym-
bols according to certain rules. The improvement is most effective if the involved
mathematical objects have an explicit and unambiguous geometric interpretation
transformed into computer visual images. In such case the cognitive process is en-
forced radically by including in it human visual system — our most powerful sensor
system for communication with the outer world.

Clifford (or, maybe, better to say “Geometric”) algebra is one of the best exam-
ples of such a field in mathematics, the more so as its mathematical formalism is
tending to become a unified language for theoretical physics (Hestenes and Sobczyk,
1987). Geometric algebra is superbly convenient to be supplied with adequate com-
puter representation programs. It is extremely important today when we have, from
one side, a tendency among students of mathematics or physics for a more intuitively
obvious and even visualizable basis for mathematical constructions and, from an-
other side, we have available computer facilities, in hardware and software, to meet
such desires.

For several years now we have had CLICAL, a well known and widely recog-
nized computer program developed by professor Pertti Lounesto and his colleagues
(Lounesto et al., 1987). This program allows a student to make all algebraic calcula-
tions in the field of Clifford algebras — from complex numbers to the special relativity
theory. At the same time it should be said that CLICAL code is written (and, sure,
couldn’t be written in another way at those days) in the text mode. While the pro-
gram can only manipulate numbers and symbols, objects of the Geometric Algebras,

286 ALEXANDER M. SOIGUINE

at least in low, visualizable dimensions, have direct geometrical interpretation. So
today we have a challenge to transform CLICAL into a graphical interface or, re-
- ally, to develop a Clicalian computer program able to appropriately manipulate and
visualize corresponding geometrical objects. We have now good computer displays
and we have adequate and powerful computer languages to deal with graphical im-
ages namely object-oriented languages such as, first of all, C++. Development and
implementation of such program could have far reaching educational consequences
and may be considered as the next generation of Lounesto’s CLICAL.

Before delving into a discussion of C++ classes representing geometric objects
and their behaviors, we clarify some basic and well known geometric facts about
Clifford algebras to make them absolutely unambiguous in their geometrical inter-
pretation hence more suitable for computer implementation.

Hestenes said that “physicists quickly become impatient with any discussion of
elementary concept” (Hestenes, 1985). This statement is not applicable to the author
because his goal here is not to make a show on super complicated mathematical
wisdom but to reveal, at a maximal degree, initial geometrical sense of some basic
operations in the Clifford algebra and track possible relations with corresponding
C++ units. From this point of view the current work has a methodological and
educational content. So, we shall start with recollection of some ideas.

2. Geometric algebra of the plane

The arena of the performance will now be a two-dimensional plane denoted here
as Fy. At the very beginning I emphasize that in no way Fs is viewed here as a
two-dimensional linear space, that is as a set of linear combinations ale; + a’es
where e;,e; are two arbitrary linearly independent vectors from E, and o?,a?
are scalars.! For our purposes E, should be thought of as a geometrical object, an
abstraction arising from such real things as a table-desk or a sheet of paper. I won’t
make any attempt to give a formal definition of E5, I am just considering it as an
intuitively obvious geometrical object.

Certainly, elements of the form a'e; + o?ey are in Es. These are directed seg-
ments of straight lines in the plane, or arrows. We shall call them (two-dimensional)
vectors. A vector may be identified by its length (value) and direction (orientation).

However, there exists at least one another sort of geometrical objects inhabiting
E4 which are of the greatest importance for in Geometric Algebra considerations. I
mean closed oriented curves without self-intersections lying in Ej .

Closed oriented curves are identified, similarly to usual vectors, by value and
orientation. By the value of such a geometrical object we mean a non-negative
number which is equal to the area inside the curve. By the orientation we mean one
of the two possible directions of movement along the closed curve. One will be called
positive, another negative. For shortness, we will call the oriented closed curves on
E5 bivectors as is the common practice.

Ordinary free vectors in the plane are defined up to parallel movements in Es .

1 1 do not say real scalars since, I hope, it would be evident soon that it has a little sense to
speak about complex-valued scalars. If we would follow that practice, then elements of any field,
over which a linear space is considered, should be called scalars.

COMPLEX CONJUGATION — RELATIVE TO WHAT? 287

Bivectors are defined up to arbitrary movements and curve deformations which don’t
change the area inside the curve.

Let us make some agreements about notation. Usual vectors will be denoted
by small Latin letters: a,b,.... Bivectors will be denoted by capital Latin letters:
A,B,.... For scalars we will use Greek alphabet: «,f3,.... Values of vectors
and bivectors are denoted, along with the absolute values of scalars, as |a|,|A4],....
Orientation of a bivector A will be denoted as 04 and if it is given then the two
possible values are denoted as (’)j{ and O} .

The set of vectors in E5 is a linear space with the known geometrical sense of
the operations. Now we have to supply the set of bivectors in Ey with the structure
of a linear space.

Given two bivectors, A, B, their sum is a bivector C = A+ B, the value of which
is equal to |A| + |B] in the case of coinciding orientations of A and B, O4 = Op,
and ||A|—|B|| in the case of opposite orientations, @4 = —Opg . The orientation of
C is the same as the common orientation of A and B in the first case and is equal
to the orientation of bivector with the greater value in the second case.

Multiplication by a scalar is defined in an obvious way. Given a bivector A and
a scalar A, the product AA is a bivector with |[AA| = |A||A| and Oxa = O4 if
A>0,and Oxa =—-04,if A <0.

The zero element for addition is the equivalence class of oriented curves with zero
inside area.

The unit positive oriented bivector will be denoted by ig,, or simply 7, because
we have only one plane E5 at our disposal for the moment. Generally, an “imaginary
unit” must be supplied with a subscript denoting the plane in which the unit bivector
lies.

All axioms of a linear space are verified immediately for bivectors. The linear
space of bivectors in Fo will be denoted by B, the linear space of vectors will be
denoted by V| and the linear space of scalars will be denoted here by S.

Now we can form outer direct sums of these linear spaces in various combinations:
SeV,S®B, V@B and S®V & B. Recall that the direct sum of linear spaces
is a linear space of all sequences of elements belonging to the corresponding spaces.
‘We may consider direct sum as the set of all given linear spaces “put in one bag”,
where they don’t mix up, similar to distinct purchases in a bag. Linearity is checked
easily, for example, addition in V @ B is defined as:

V@B M,M;: M+ M, = ((M)y + (Mz)y,(M1)g + (M2)g) e VOB

where (M;)y and (M;)g are, respectively, the vector and the bivector components
of M; e V+B.
The linear space C = S®» B = S& (B is the set of complex numbers in Ey. It is
a subalgebra of Gy, = S® V@ B, the Geometric (Clifford) Algebra of the plane E5 .
To explain the usage of the term “algebra” we shall define multiplication in Gy .
Let’s begin with a definition of vector multiplication since multiplication by
scalars is trivial. Given two vectors a,b € V we define their product as a map

VxV3(ab)—ab=(a-baAb)eSDB

where a - b is a scalar, equal to the scalar product of vectors a and b computed as

288 ALEXANDER M. SOIGUINE
|a||b] cos (:,\b) and aAb is a bivector with the value |a|[b||sin @] and orientation
defined by rotation of @ to b through the angle which is less than 7.

If we identify in a natural way elements of each space, comprising the direct sum,
with elements of the form (a,0y;,0g), (0g,q,0g) and (0g,0y;, A) and denote
the addition in S®V @® B by the usual “plus”, then an arbitrary M € S® VEB is
written as M = a+a+ A. In the same way S® B is identified with the subalgebra
of Gy of elements of the form o+ A,so ab=a-b+ig,|la Ab|.

It remains to define product of a vector with a bivector and product of two
bivectors.

For a € V and A = ig,a € B, multiplication of a by A from the right, a4, is
vector of value |a||a|, rotated in the direction of the positive orientation in Es by
the angle 7, with the opposite direction in the case of negative «. If the operands
have opposite order of multiplication, Aa, the rotation is made in the direction of
negative orientation on Ejy. Clearly, aA = —Aa.

To calculate ip,? we first check the associativity of the geometric product of
vectors. If the distributivity of multiplication of vectors relatively to their addition
is valid then it suffices to consider products of three basis vectors. The proof of dis-
tributivity is a tedious exercise in trigonometry, and we take it for granted. Then we
have for basis vectors e; (e1e3) = e1ig, = e and (eje1) ez = ey, thus associativity
holds. Hence, together with anticommutativity of orthogonal vectors, it follows that
iE22 = ejegeiey = —1.

Now let’s turn to complex conjugation. In conventional geometric interpretation
complex numbers are represented as vectors in some given orthogonal reference frame
on the plane which is called the complez plane. This counterclockwise frame has the
first axis as the real one, and the second axis, rotated by % in positive direction,
as the imaginary axis. A complex number (vector) has the first projection called
the real part, and the second projection called the imaginary part. Conventionally,
when written algebraically as a + ib, where @ and b are usual (real) numbers and
¢ is formally introduced as “imaginary unit” with the crucial property i> = —1, the
complex numbers possess the operation of “complex conjugation”: a + b — a — b,
which will be seen to be basis dependent.

At the same time, unambiguous and the only correct representation of complex
numbers as elements of S@B and having the form a+ig,8 has no such deficiency.
The map o + i, — o — ig,B doesn’t depend on a basis in E5 and means that
orientation of the bivector part in a pair (e, ig,0) is changed to the opposite.

Then, what to do with the conventional complex conjugation considered as the
reflection of the vector relative to the real axis? First, we remember that there
exists a correspondence between elements o+ ig,3 of S@®B considered as complex
numbers in a strict sense and vectors from V.

Suppose, we’ve chosen a unit vector e; on FEs, the latter is by assumption
counterclockwise positive oriented. Given a complex number « + ig,f, multiply
it by e; from the left. Then we get the vector ae; + Be,, where ey is the unit
vector rotated from e; by 7 in the positive direction. So, we get the conventional
geometric representation of a complex number as a vector. Arbitrarily chosen unit
vector e; fixes the real axis, e; — the imaginary one. Complex conjugation in these
terms is the reflection of ae; + fey relative to ey .

COMPLEX CONJUGATION — RELATIVE TO WHAT? 289

We can call ae; + Bes a relative vector representation of a complex number
a+ig,B defined by the vector e; .

If we choose another unit vector, say fi, in Fy, we get the same “vectorial”
picture together with complex conjugation as the reflection relative to the direction
orthogonal to f; but the picture is rotated in E5 by the angle between e; and
f1. Here we have maybe the simplest example of a gauge transformation connect-
ing different relative representations of geometrically invariant object, a complex
number in this case. It is worth mentioning that a rotation in FEj is generated by
multiplication by elements « + i, where o? + 2 = 1. For an explanation of
this well known fact see (Gull et al., 1993). Because of the above condition on «
and (, bivector generating a rotation may be written as cos¢ + ig, sin ¢, where
¢ 1is the angle of rotation. Since the rules for addition of the angle arguments in
multiplication of such bivectors coincide with those in multiplication of exponents,
rotation generating bivectors are symbolically written as e*#2¢ | taking into account
the Euler’s formulas and accepting the fact that the function sin feels orientation,
whereas cos doesn’t.

Having reviewed briefly some facts about the two-dimensional plane, which we
consider as insufficiently clarified in the works on Geometric Algebra, we pass to
even more fragmental discussion on higher dimensions.

3. Higher dimensions

Now we’ll touch briefly the cases of higher physical dimensions. All results are
principally known and only the interpretation, transparent geometrical sense and
unambiguous relations between different representations are important to us. Some
additional interesting details may be found in (Soiguine, 1990).

Suppose we are in the physical three dimensions. The Geometrical product of any
two vectors is the same as in the plane, but here the plane of the bivector component
is defined as the plane spanned by vector multipliers. Orientation of that plane is
determined by given orientation of the three-dimensional space, which may be left
or right by definition.

We are to define a geometrical product of a vector and bivector when the former
is not in the bivector plane. To do this, we expand vector in two components,
parallel and perpendicular to the bivector plane, a = g + a|. The product of
the parallel component @ with given bivector B 1is calculated by the rule of the
previous section. It gives vector a)ig|B| or ipq |B| depending on the order of the
multipliers. The product a| B gives oriented volume equal to |a|||B|, the orientation
being determined by a screw representing both rotation in the bivector B plane in
the direction of B and movement along a|. It is very convenient to imagine an
oriented volume as a cylinder of the given volume with a string wound around it in
one of the two possible ways. The oriented volumes, or trivectors, may be written
as iz, where i3 is a positively oriented unit volume.

Geometric product of a vector a with a trivector ais gives, independently of the
order, a bivector of value |&||a| lying in the plane orthogonal to a and oriented in
such way that its orientation and the direction of a restore the orientation of wis.

This rule actually gives the correspondence of duality between vectors and bivec-

290 ALEXANDER M. SOIGUINE

tors in three dimensions. If we have A = iza then A is called dualto a.

If A is a bivector then i3A = Aiz is vector of the value |A|, orthogonal to the
- plane of A and having orientation which, together with the orientation of A, gives
three-dimensional orientation opposite to that of 3.

If a =i3A = Aiz then a is called dual to A.

The inversion of the resulting common orientation in duality between vector and
bivector, and bivector and vector follows from the fact that double duality changes
the sign of a geometrical object. For example, if iza = A then multiplying by i3
from the left gives —a = igA. Here we use the fact that i3 = —1, which may
be checked from possible representation iz = ejeses where {e;} — unit orthogonal
basis of given orientation in three dimensions.

Now, a general element of the Geometrical algebra in the three physical dimen-
sions, G3=S®V dB® T, has the form:

G39M:a+a+13b+23ﬂ

What is the complex conjugation in this case? For example, the subset of elements of
the form a+i3b comprise a subalgebra, if we mean the algebraic form of elements. At
the same time any such element determines its own “complex plane”, defined by the
direction of vector b in three dimensions and orientation of i3. In multiplication
two such elements give an element of the same algebraic form but with its new
complex plane. If i3b = B then always we can write « + i3b = o + ipf, where
|B] = |b] = |B|. So, we can conclude that quaternions are really complex numbers
differing from the convention in a single aspect that a quaternion “complex plane”
is arbitrarily imbedded in the three dimensions.

At the end of this section I would like to suggest an interesting question to the
reader: Is it possible to adjoin to the indefinite metric in the special relativity a
“complex conjugation” remembering that the latter is nothing else but an inversion
of orientation?

4. C++ classes implementation of Geometric Algebra in the plane

Now we consider possible computer C++ language implementation of geometrically
obvious operations in Geometric algebra in the plane restricting ourselves to the
simplest case of complex numbers. The C++ language is adequate in its class
type variable structure to describe real physical things, and geometric objects in the
plane in particular.

As it was mentioned earlier, the forthcoming computer program should be written
in a graphical mode and because of that user input operations and screen output
operations will become more complicated. The program is menu-controlled. Input
may be either digital or graphical while complex numbers are input as vectors with
the mouse manipulations.

The class type variable representing complex numbers together with operations
on them may be defined as:

typedef class tagCOMPLEXNUMBER {
double RealPart;

COMPLEX CONJUGATION - RELATIVE TO WHAT? 291

double ImagPart;

int ScrRealPart;

int ScrImagPart;

char StrRealPart[];

char StrImagPart[];

int xScreenOrigine;

int yScreenOrigine;

int RSEntered;

int ISEntered;

int GetStrReal(int,int,char*);
int GetStrImag(int,int,charx*);
int WriteNumber(int);

void EraseNumberPicture(void);
void EnlargeNumberPicture(double times);
void ConvertRealToString(void);
void ConvertImagToString(void);
void ConvertStringToReal(void);
void ConvertStringToImag(void);

public:

friend tagCOMPLEXNUMBER operator+(tagCOMPLEXNUMBER,
tagCOMPLEXNUMBER) ;

friend tagCOMPLEXNUMBER operator-(tagCOMPLEXNUMBER,
tagCOMPLEXNUMBER) ;

friend tagCOMPLEXNUMBER operator*(tagCOMPLEXNUMBER,
tagCOMPLEXNUMBER) ;

friend tagCOMPLEXNUMBER operator/(tagCOMPLEXNUMBER,
tagCOMPLEXNUMBER) ;

void SetRealPart(double value) {RealPart = value;}
double GetRealPart(void) {return RealPart; }
void SetImagPart(double value) {ImagPart = value; }
double GetImagPart(void) {return ImagPart; }
void SetScrRealPart(int value) {SchealPart = value;}
int GetScrRealPart(void) {return ScrRealPart; }
void SetScrImagPart(int value) {ScrImagPart = value; }
int GetScrImagPart(void) {return ScrImagPart; }
int EnterNumber(int);
void DrawNumber(void);

} COMPLEXNUMBER;

Only a part of the type definition is written here, consisting of comprehensive

292 ALEXANDER M. SOIGUINE

class variables and functions.

Partition between private and public functions in the COMPLEXNUMBER class de-
- pends on concrete realization. For example, one of the main public functions,
EnterNumber, has the C++ code:

int tagCOMPLEXNUMBER: :EnterNumber(int number) {
int result=0;

do {

switch(mode % 2) {

case 0:

if (number==1)

{

if

(WriteNumber ((strlen("operand'")+2)*charwidth))
result=1;

else result=0; } else

if (number==2)

{

if

(WriteNumber ((strlen("operand'")+4)*charwidth+X_ max/2))
result=1;

else result=0; }

break;

case 1: Dbreak;
} } while(!result);
return result;

}

The private function WriteNumber, in turn, has the code:

int tagCOMPLEXNUMBER: :WriteNumber(int leftboundary) {
static int RResult=0;

static int IResult=0;

char* invfigptr = 0;

if (!(mode Y% 2))

do {

if (leftboundary<X_ max/2)
WashRect(leftboundary,Ymax+1,X_ max/2-2,Ystatusline-17);
else if(leftboundary>=X_ max/2)
WashRect(leftboundary,Ymax+1,X_ max-1,Ystatusline-17);
GetStrReal(leftboundary+4,Ymax+11,"Real part = ");

if (RSEntered) RResult=1;
SetRealPart(strtod(StrRealPart,& invfigptr));

if (*invfigptr!=NULL) Beep();

}

while ((*invfigptr!=NULL)&& (!(mode % 2)));

else { WashRect(1,Ymax+1,X_ max-1,Ystatusline-1); }

COMPLEX CONJUGATION - RELATIVE TO WHAT? 293

invfigptr = 0;

if (!(mode % 2))

do {

if (leftboundary<X. max/2)

WashRect(leftboundary, Ymax+17,X_ max/2-2,Ystatusline-1);
else if(leftboundary>=X_ max/2)
WashRect(leftboundary,Ymax+17,X_ max-1,Ystatusline-1);
GetStrImag(leftboundary+4,Ystatusline-5,"Imaginary part = ");
if (ISEntered) IResult=1;
SetImagPart(strtod(StrImagPart,& invfigptr));

if (*invfigptr!=NULL) Beep();

}

while ((*invfigptr!=NULL)&& (!(mode % 2)));

else { WashRect(l,¥Ymax+1,X_ max-1,Ystatusline-1); }

if (RResult&& IResult) return 1; else return O;

}

Here, for example, the function GetStrReal, implementing the input of a string
containing the value of the real (scalar) part of complex number, has the code:

int tagCOMPLEXNUMBER::GetStrReal(int X,int Y,char* mes)
{ RSEntered = 0;

int len=strlen(mes), i=0, j, maxlen, k;
char ch, s2[2];

maxlen = charwidth*(len+12); s2[1] = ’\0’;
outtextxy(X,Y,mes);

while(1)

{ j=(lent+i)*charwidth;

if (j>=maxlen) break;-

TxtCursor (X+j, Y-6);

ch=getch();

if (!ch) ch=getch();

TxtCursor(X+j, Y-6);

if(ch==ESC || ch==BACKSPACE || ch==ENTER)
{ if (ch==ESC)

if(i>0) {k=(len+i)*charwidth; i=0;
WashRect(X+1en*charwidth,Y—charheight,X+k+charwidth,Y);}
} else

if (ch==BACKSPACE)

{ if(i>0) i--;

k=(len+i)*charwidth;

WashRect (X+k,Y-charheight ,X+k+charwidth,Y);

}

else

if (ch==ENTER) {RSEntered=1;break; }

294 ALEXANDER M. SOIGUINE

}

else

{ StrRealPart[il=s2[0]=ch;

outtextxy (X+j,Y,s2);

i++; } } if (i==0) {StrRealPart[il=s2[0]=’0’;
outtextxy (X+j,Y,s2);i++; }

StrRealPart[i]=’\0";

return *StrRealPart;

}

The above portions of C++ source code illustrate work which is in progress
now and, I hope, will soon result in a valuable computer program implementing
Geometric algebra visual interpretation.

5. Conclusions

The author’s intentions here were mainly pedagogical and methodological. The
point is that Geometric algebra of the plane or the three-dimensional physical space
has unambiguous and transparent geometric interpretations not realized yet in all
details. This interpretation may be realized in computer images in terms of adequate
object-oriented language C++. The work is in progress and is expected to yield next
graphical version of the well known CLICAL.

References

S. Gull, A. Lasenby, Ch. Doran: 1993, ‘Imaginary numbers are not real — the Geometric Algebra
of spacetime’, Found. Phys. 23, pp. 1175-1201.

D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus, Reidel, Dordrecht.

D. Hestenes: 1985, ‘Clifford algebra and interpretation of quantum mechanics’, Proc. NATO and
SERC Workshop on Clifford Algebras and Their Applications in Mathematical Physics, Can-
terbury, pp. 321-346.

P. Lounesto, R. Mikkola, V. Vierros: 1987, CLICAL, Program and User Manual, Helsinki Univer-
sity of Technology, Helsinki.

A M. Soiguine. Vector Algebra in Applied Problems, Naval Academy Publ., St. Petersburg, 1990.
(in Russian)

	complex_conjugation_285.pdf
	complex_conjugation_286
	complex_conjugation_287
	complex_conjugation_288
	complex_conjugation_289
	complex_conjugation_290
	complex_conjugation_291
	complex_conjugation_292
	complex_conjugation_293
	complex_conjugation_294

