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Abstract 
Superposition and entanglement are two theoretical pillars quantum compu-
ting rests upon. In the g-qubit theory quantum wave functions are identified 

by points on the surface of three-dimensional sphere 3 . That gives differ-
ent, more physically feasible explanation of what superposition and entan-
glement are. The core of quantum computing scheme should be in manipula-

tion and transferring of wave functions on 3  as operators acting on obser-
vables and formulated in terms of geometrical algebra. In this way quantum 
computer will be a kind of analog computer keeping and processing informa-
tion by sets of objects possessing infinite number of degrees of freedom, con-
trary to the two value bits or two-dimensional Hilbert space elements, qubits. 
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1. Introduction: Conventional Entanglement 

Complementarity principle in physics says that a complete knowledge of phe-
nomena on atomic dimensions requires a description of both wave and particle 
properties. The principle was announced in 1928 by the Danish physicist Niels 
Bohr. His statement was that depending on the experimental arrangement, the 
behavior of such phenomena as light and electrons is sometimes wavelike and 
sometimes particle-like and that it is impossible to observe both the wave and 
particle aspects simultaneously. 

In the following it will be shown that actual weirdness of all conventional 
quantum mechanics comes from logical inconsistence of what is meant in basic 
quantum mechanical definitions and has nothing to do with the phenomena 
scale and the attached artificial complementarity principle [1] [2] [3] [4]. 

It will be explained below that theory should speak not about complementari-
ty but about proper separation of measurement process arrangement into oper-
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ator, three-sphere 3  element, acting on observable, and operand, measured 
observable. 

It will be shown that quantum mechanics is not of something deeper but 
should be replaced by something conceptually different. 

In the suggested alternative it is said that theory should speak not about com-
plementarity but about proper dividing of the measurement process into opera-
tor, wave function, which is the three-sphere 3  element acting on observable, 
and operand, the measured observable. 

A vector in quantum mechanics is the mathematical gadget used to describe 
the state of a quantum system, its status, what it’s capable of doing. A state as-
signed to elementary particles there is given by a unit vector in a vector space, 
really a Hilbert space nC , particularly 2C , encoding information about the 
state. The dimension n is the number of different observable things after making 
a measurement on the particle. 

The simplest quantum mechanical state, qubit, reads: 

12
1 2 1 2

2

1 0
0 1

0 1
z

C z z z z
z

     
= + = +     

    


 
It has just two observable “things” after measurement, say “up” for 0  and 

“down” for 1 , with probabilities 2
1z  and 2

2z . 
In the case of two particles vector space 2C  is generalized to density matrix 

defined on tensor product 2 2C C⊗  and in the case of N particles we get  
2 2 2C C C⊗ ⊗ ⊗ , N-fold tensor product. 
The appropriateness of tensor products is that the tensor product itself cap-

tures all ways that basic things can “interact” with each other. 

2. Wave Functions in the g-Qubit Theory 

Wave function will be a unit value element of even subalgebra of three-dimensional 
geometric algebra. Such elements will execute twisting of observables. Even sub-
algebra 3G+  is subalgebra of elements of the form 3 SM Iα β= + , where α  
and β  are (real)1 scalars and SI  is some unit bivector arbitrary placed in 
three-dimensional space. 

Wave functions as elements of 3G+  are naturally mapped onto unit sphere 
3  [5] [6] [7]. 
If in some bivector basis { }1 2 3, ,B B B , with, for example, right-hand screw 

multiplication rules 1 2 3 1B B B = , 1 2 3B B B= − , 1 3 2B B B= , 2 3 1B B B= − , the 
twisting plane bivector is 

1 2 3
1 2 3SI b B b B b B= + + , 

then 
1 2 3

1 2 3SI b B b B b Bα β α β β β+ = + + +  

{ }1 2 3, , ,SI b b bα β α β β β+ ⇒  

 

 

1In the current formalism scalars can only be real numbers. “Complex” scalars make no sense any-
more. 
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and 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 2 22 2 2 21 2 3 1b b bα β α β+ + + = + = , 

since wave function is normalized and bivector SI  is a unit value one. 
Wave function can always be conveniently written as exponent, see [7], Sec. 2. 

5, 

e SI
SI ϕα β+ = , cosα ϕ= , sinβ ϕ=  

The product of two exponents is again an exponent, because generally 

1 2 1 2g g g g=  and 1 2 1 2e e e e 1S S S SI I I Iα β α β= = . 

Multiplication of an exponent by another exponent is often called Clifford 
translation. Using the term translation follows from the fact that Clifford trans-
lation does not change distances between the exponents it acts upon if we iden-
tify exponents as points on unit sphere 3 : 

{ }
1 1 2 2 3 3

1 2 3

cos sin cos sin sin sin
cos , sin , sin , sin

SI b B b B b B
b b b

α α α α α α

α α α α

+ = + + +

⇔  

( ) ( ) ( ) ( )22 2 2
1 2 3cos sin sin sin 1b b bα α α α+ + + =  

This result follows again from 1 2 1 2g g g g= : 

( )1 2 1 2 1 2e eS SI Ig g g g g gα α− = − = −
 

Clifford translation of a wave function 22e SI ϕ  by 11e SI ϕ  is displacement of 
the wave function, point on 3 , along big circle that is intersection of 3  by 

1S  by parameter 1ϕ . 

3. The Meaning of Schrodinger Equation 

Let us take some vector ( ) ( ) ( ) ( )( )1 2 3
3 1 2 3H t I t B t B t Bχ χ χ= + +  and execute 

infinitesimal Clifford translation of a wave function ( ) ( )e S tI tϕ  using bivector 
( )3I H t−  and Clifford parameter ( )0H t t∆  at some instant of time 0t : 

( )
( )

( )
( ) ( )

0
3 0

00 0e e S t

H t
I H t t I tH t ϕ− ∆

 

With denoting 
( )
( )

( )0
3 0

0
H

H t
I I t

H t
≡  we get: 

( ) ( ) ( ) ( ) ( ) ( )0 00 00 0e e eS t t S tHI t t I tI t H t tϕ ϕ+∆ +∆ − ∆≈  

and 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 00 0

0 00 0

00

0

0 0

0

0 0

e elim

1 e e
lim

e

S t t S t

S t S t

S t

I t t I t

t

I t I t
H

t

I t
H

t

I t H t t

t

I t H t

ϕ ϕ

ϕ ϕ

ϕ

+∆ +∆

∆ →

∆ →

−
∆

− ∆ −
=

∆

= −
 

https://doi.org/10.4236/jamp.2023.112027


A. Soiguine 
 

 

DOI: 10.4236/jamp.2023.112027 451 Journal of Applied Mathematics and Physics 
 

That gives the Schrodinger equation: 

( ) ( ) ( ) ( ) ( ) ( )e eS t S tI t I t
HI t H t

t
ϕ ϕ∂

− =
∂

 

That means that the Schrodinger equation defines infinitesimal changes of 
wave functions under Clifford translations along big circles of 3 . 

4. Superposition of Two Basic Wave Functions  
Corresponding to 0  and 1  

The quantum mechanical qubit state, 1 20 1z zψ = + , is linear combination 
of two basis states 0  and 1 . In more details: 

1

3 2

i
i

α β
ψ

β β
+ 

=  +   
There exist infinite number of options to select triple { }1 2 3, ,B B B . Thus, the 

procedure of recovering a g-qubit associated with 1 20 1z zψ = +  is the fol-
lowing one: 

It is necessary [6] [7] firstly, to define bivector 
1i

B  in three dimensions iden-
tifying the torsion plane. Secondly, choose another bivector 

2i
B  orthogonal to 

1i
B . The third bivector 

3i
B , orthogonal to both 

1i
B  and 

1i
B , is then defined 

by the first two by orientation (handedness, right screw in the used case): 

1 2 33 3 3 3i i iI B I B I B I= . 
Wave functions in the suggested theory are operators acting through mea-

surements on observables: 

( ) ( )S SI C Iα β α β+ +
 

For any wave function 
1i iBα β+ , 1,2,3i = , corresponding to 0  (assuming 

2 2 1iα β+ = ) we get: 

( ) ( ) ( )1 1 1 1 1

2 2
i i i i i i i iB B B B Bα β α β α β− + = + =

 
For the wave functions ( ) ( ) ( ) ( )2 mod3 2 mod3 1 mod3 1 mod3i i i iB Bβ β+ + + ++ ,, 1,2,3i = , cor-

responding to 1  (with the agreement 3mod3 3= ) the value of observable 

1i
B  is (with same assumption ( ) ( )

2 2
2 mod3 1 mod3 1i iβ β+ ++ = ): 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

1

1 1

2 mod3 2 mod3 1 mod3 1 mod3 2 mod3 2 mod3 1 mod3 1 mod3

2 2
2 mod3 1 mod3

ii i i i i i i i

i ii i

B B B B B

B B

β β β β

β β

+ + + + + + + +

+ +

− − +

= − + = −
 

Let us take an arbitrary bivector observable expanded in basis  
{ } { }1 2 31 2 3, , , ,i i iB B B B B B≡ : 

1 1 2 2 3 3C C B C B C B= + +  
The result of measurement by wave function corresponding to 0  is: 

( ) ( )
( ) ( )

( ) ( )

1 1 1 1

2 2 2 2
1 1 2 1 3 1 2 3 1 2 1 3

1 1 2 3 2 2 3 3

2 2

cos 2 sin 2 sin 2 cos 2 ,

B C B

C B C C B C C B

C B C C B C C B

α β α β

α β αβ α β αβ

ϕ ϕ ϕ ϕ

− +

   = + − − + − +   
= + − + +

  (4.1) 

https://doi.org/10.4236/jamp.2023.112027


A. Soiguine 
 

 

DOI: 10.4236/jamp.2023.112027 452 Journal of Applied Mathematics and Physics 
 

using parametrization cosα ϕ= , 1 sinβ ϕ= . 
The result of measurement by wave function corresponding to 1  is: 

( ) ( )
( ) ( )

( ) ( )

2 2 3 3 2 2 3 3

2 2 2 2
1 1 2 2 3 3 2 3 2 2 2 3 3 2 3 3

1 1 2 3 2 2 3 3

2 2

cos 2 sin 2 sin ,2 cos 2

B B C B B

C B C C B C C B

C B C C B C C B

β β β β

β β β β β β β β

θ θ θ θ

− − +

   = − + − + + − −   
= − + + + −

 (4.2) 

with 2 cosβ θ= , 3 sinβ θ= . 
This is a deeper result compared with conventional quantum mechanics 

where 

10
0
iα β+ 

=  
 

 and 
3 2

0
1

iβ β
 

=  + 
 

Conclusion: 
• Measurement of observable 1 1 2 2 3 3C C B C B C B= + +  by any wave function 

corresponding to 0  is bivector with the 1B  component equal to un-
changed value 1C . The 2B  and 3B  components of the result of measure-
ment are equal to 2B  and 3B  components of C rotated by angle 2ϕ  de-
fined by cosα ϕ= , 1 sinβ ϕ=  where plane of rotation is 1B . 

• Measurement of observable 1 1 2 2 3 3C C B C B C B= + +  by any wave function 
corresponding to 1  is bivector with the 1B  component equal to flipped 
value 1C− . The 2B  and 3B  components of the result of measurement are 
equal to 2B  and 3B  components of C rotated by angle 2θ defined by 

2 cosβ θ= , 3 sinβ θ=  where plane of rotation is 1B  but direction of rota-
tion is opposite to the case of 0 . 

If we denote by 0so  and 1so  arbitrary wave functions represented in 3G+  
by 1 1Bα β+  and ( )2 2 3 3 3 2 1 3B B B Bβ β β β+ = +  they only differ by factor 3B  
in 1so , thus for the measurement by them we have: 

3 31 1 0 0so Cso B so Cso B=
 

That simply means that the measurement on the left side is received from 

0 0so Cso  by its flipping in plane 3B . 
Probabilities of the results of measurements are measures of wave functions 

on 3  surface giving considered results. 
Suppose we are interested in the probability of the result of measurement in 

which the observable component 1 1C B  does not change. This is relative meas-

ure of wave functions 2 2 1
1 12 2 2 2

1 1

Bβαα β
α β α β

 
 + +
 + + 

 in the measure-

ments: 

2 2 2 21 1
1 1 1 12 2 2 2 2 2 2 2

1 1 1 1

B C Bβ βα αα β α β
α β α β α β α β

   
   + − + +
   + + + +   

 (4.3) 

That measure is equal to 2 2
1α β+ , that is equal to 2

1z  in the down mapping 

from 3G+  to Hilbert space of 1 20 1z z+ . Thus, we have clear explanation of 
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common quantum mechanics wisdom on “probability of finding system in state 
0 ”. 

Similar calculations explain correspondence of 2 2
3 2β β+  to 2

2z  in the qubit 

1 20 1z z+  when the component 1 1C B  in measurement just got flipped. 
Let us consider superposition of 1 1Bα β+  and 2 2 3 3B Bβ β+  with some coef-

ficients 1p  and 2p , 

( ) ( )1 1 1 2 2 2 3 3p B p B Bα β β β+ + + , 

and measuring by it of 1 1 2 2 3 3C C B C B C B= + + . 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 1 1 2 2 2 3 3 1 1 1 2 2 2 3 3

1 1 1 1 1 1 2 2 2 3 3 2 2 2 3 3

2 2 2 3 3 1 1 1 1 1 1 2 2 2 3 3

1 1 1 1 1 1 2 2 2 3 3 2 2 2 3 3

1 1 1 1 1 1 1

p B p B B C p B p B B

p B Cp B p B B Cp B B

p B B Cp B p B Cp B B

p B Cp B p B B Cp B B

p B Cp B p

α β β β α β β β

α β α β β β β β

β β α β α β β β

α β α β β β β β

α β α β α

   − + − − + + +   
= − + + − − +

+ − − + + − +

= − + + − − +

+ − + ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2 2 3 3

2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 1 1 1

B p B B

p B B Cp B B p B B p B

β β β

β β β β β β α β

− +

+ − − + − − +  
It follows from this formula that the result of measurement by wave function 
( ) ( )1 1 1 2 2 2 3 3p B p B Bα β β β+ + +  makes the 1 1C B  component unchanged and 

two other components rotated around the normal to 1B , see (4.1) and (4.3), 
with probability 2

1p  (item ( ) ( )1 1 1 1 1 1p B Cp Bα β α β− + ). Then it just flips the 

1 1C B  component and two other components rotated around the normal to 1B , 
but in opposite direction see (4.2) with probability 2

2p  (item  
( ) ( )2 2 2 3 3 2 2 2 3 3p B B Cp B Bβ β β β− − + ). 

Other two items are correspondingly the first above item subjected to Clifford 
(parallel) translation on 

3  by ( )( )1 2 1 1 2 2 3 3p p B B Bα β β β− +  and the second 
item subjected to opposite Clifford translation ( )( )1 2 2 2 3 3 1 1p p B B Bβ β α β− − + . 
They are neither (4.1) nor (4.2) and their probabilities to make 1 1C B  unchanged 
or flipped are zero. Thus, they give two other different available measurement 
results. 

5. Superposition of Two Arbitrary Wave Functions 

Any arbitrary 3G+  wave function 1 1 2 2 3 3B B Bα β β β+ + +  can be rewritten ei-
ther as 0-type wave function or 1-type wave function: 

( )1 2 3

2 2 2
1 1 2 2 3 3 1 2 3, ,SB B B I β β βα β β β α β β β+ + + = + + + , 

where ( )1 2 3

1 1 2 2 3 3
, , 2 2 2

1 2 3
S

B B B
I β β β

β β β

β β β

+ +
=

+ +
, 0-type, 

or 

( )

( )( )2 1

1 1 2 2 3 3 3 2 1 1 2 3 3

2 2 2
3 1 2 3, ,S

B B B B B B B

I Bβ β α

α β β β β β β α

β α β β− −

+ + + = + − −

= + + +
, 

where ( )2 1

2 1 1 2 3
, , 2 2 2

1 2
S

B B B
I β β α

β β α

α β β
− −

− −
=

+ +
, 1-type. 
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All that means that any 3G+  wave function 1 1 2 2 3 3B B Bα β β β+ + +  measur-
ing observable 1 1 2 2 3 3C B C B C B+ +  does not change the observable projection 

onto plane of ( )1 2 3

1 1 2 2 3 3
, , 2 2 2

1 2 3

   
S

B B B
I β β β

β β β

β β β

+ +
=

+ +
 and just flips the observable pro-

jection onto plane ( )2 1

2 1 1 2 3
, , 2 2 2

1 2
S

B B B
I β β α

β β α

α β β
− −

− −
=

+ +
. 

Take two arbitrary wave functions and rewrite the first one as 0-type wave 
function and the second one as 1-type wave function. Then all the results of Sec. 
2 become applicable for their superposition. It will follow that there will be a re-
sult of measurement 

( )( ) ( )( )1 2 3 1 2 3

2 2 2 2 2 2 2
1 1 2 3 1 2 3, , , ,S Sp I C Iβ β β β β βα β β β α β β β− + + + + +

 
not changing the projection of C onto plane of ( )1 2 3, ,SI β β β  and keeping proba-
bility 2

1p ; plus, result of measurement 

( )( )( ) ( )( )( )2 1 2 1

2 2 2 2 2 2 2
2 3 3 1 2 3 1 2 3, , , ,S Sp B I C I Bβ β α β β αβ α β β β α β β− − − −− − + + + + +

 
just flipping projection of C in plane of ( )2 1, ,SI β β α− −  and keeping probability 

2
2p . Two other results represent the first two subjected to Clifford (parallel) 

translations on the sphere 3  by 

( )( ) ( )( )2 11 2 3

2 2 2 2 2 2
1 2 1 2 3 3 1 2, ,, , SSp p I I β β αβ β βα β β β β α β β− −− + + + + +

 
and 

( )( ) ( )( )2 1 1 2 3

2 2 2 2 2 2
1 2 3 1 2 1 2 3, , , ,S Sp p I Iβ β α β β ββ α β β α β β β− −− + + + + +

 
correspondingly. 

6. Entanglement in Measurements 

Whilst the Schrodinger equation governs infinitesimal transformations of a wave 
function by Clifford translations a finite Clifford translation moves a wave func-
tion along a big circle of 3  by any Clifford parameter. 

In 3G+  multiplication is: 

( )( )1 2 1 2 1 21 2 1 1 2 2 1 2 2 1 1 2 1 2S S S S S Sg g I I I I I Iα β α β α α α β α β β β= + + = + + +
 

It is not commutative due to the not commutative product of bivectors 

1 2S SI I . Indeed, taking vectors to which 
1SI  and 

2SI  are dual: 
11 3 Ss I I= − , 

22 3 Ss I I= − , we have, see [7], Sec. 1.1: 

( )
1 2 1 2 3 1 2S SI I s s I s s= − ⋅ − ×

 
Then: 

( ) ( )
1 21 2 1 2 1 2 1 2 2 1 1 2 3 1 2 1 2S Sg g s s I I I s sα α β β α β α β β β= − ⋅ + + − ×

 
and 

( ) ( )
1 22 1 1 2 1 2 1 2 2 1 1 2 3 1 2 1 2S Sg g s s I I I s sα α β β α β α β β β= − ⋅ + + + ×
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I the case when both elements are of exponent form: 
11

1

1 2 3
1 1 1 1 1 1 1 1 2 1 1 3e SI

SI b B b B b Bϕ α β α β β β= + = + + +
 

22
2

1 2 3
2 2 2 2 2 1 2 2 2 2 2 3e SI

SI b B b B b Bϕ α β α β β β= + = + + + , 

with 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 2 22 2 2 21 2 3

1 1 1 1 1 1 1 1b b bα β α β+ + + = + =  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 2 22 2 2 21 2 3

2 2 2 2 2 2 2 1b b bα β α β+ + + = + = , 

as in the case a wave function and Clifford translation, we get: 

( )
( )

2 12 1
1 2 1 2 1 2 3 2 1 2

3 1 2 1 3 2 1 1 2

e e cos cos sin sin cos sin

cos sin sin sin

S SI I s s I s

I s I s s

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + ⋅ +

+ − ×  
Then it follows that two wave functions are, in any case, connected by the 

Clifford translation: 

( ) ( )2 2 1 1 12 2 1 1 1
2 2 1 1e e e e , , , eS S S S SI I I I ICl S Sϕ ϕ ϕ ϕ ϕϕ ϕ−= ≡ , 

where 
( )

( )
( )

2 12 1
2 2 1 1

1 2 1 2 1 2 3 2 1 2

3 1 2 1 3 2 1 1 2

, , , e e

cos cos sin sin cos sin

cos sin sin sin

S SI ICl S S

s s I s

I s I s s

ϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

−≡

= + ⋅ +

+ + ×

. 

From knowing Clifford translation connecting any two wave functions as 
points on 3  it follows that the result of measurement of any observable C by 
wave function 11e SI ϕ , for example ( )1 11 1

1 1e e ,S SI IC C Sϕ ϕ ϕ− ≡ , immediately gives 
the result of (not made) measurement by 22e SI ϕ : 

( )
( ) ( ) ( )

2 2 2 1 1 1 1 22 2 2 1 1 1 1 2

2 1 1 22 1 1 2
1 1

2 2 1 1 1 1 2 2 1 1

e e e e e e e e

e e , e e

, , , , , , ,

S S S S S S S S

S S S S

I I I I I I I I

I I I I

C C

C S

Cl S S C S Cl S S

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕϕ

ϕ ϕ ϕ ϕ ϕ

− − − −

− −

=

=

= − − − −  
When assuming observables are also identified by points on 3  and thus are 

connected by formulas as the above one we get that the measurements of any 
amount of observables by arbitrary set of wave functions are simultaneously 
available. 

7. Conclusion 

The suggested formalism gives different, more physically feasible explanation of 
what is superposition and entanglement. Superposition of any two wave func-
tions in the frame of g-qubit theory gives another wave function the result of 
measurement by which is more complicated than in conventional quantum me-
chanics. In addition to the two results of measurements coming from composed 
items of the wave functions there appear two additional items which are Clifford 
(parallel) translations of the first two results in opposite directions on the sphere 

3 . The core of quantum computing scheme should be in manipulation and 
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transferring of wave functions on 3  as operators acting on observables and 
formulated in terms of geometrical algebra. 
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