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Abstract: Geometric Algebra formalism opens the door to developing a theory deeper than conventional quantum mechanics. 
Generalizations, stemming from implementation of complex numbers as geometrically feasible objects in three dimensions, 
unambiguous definition of states, observables, measurements, Maxwell equations solution in those terms, bring into reality a 
kind of physical fields spreading through the whole three-dimensional space and values of the time parameter. The fields can be 
modified instantly in all points of space and time values, thus eliminating the concept of cause and effect, and perceiving of one-
directional time. In the suggested theory all measured observable values get simultaneously available all together, not through 
looking one by one. In this way quantum computer appeared to be a kind of analog computer keeping and instantly processing 
information by and on sets of objects possessing an infinite number of degrees of freedom. As practical implementation, the 
multithread GPUs bearing the CUDA language functionality allow to simultaneously calculate observable measurement values 
at a number of space/time discrete points only restricted by the GPU threads capacity. 
 
 

1. Geometric algebra type of analog modeling computer 

An analog computer is generally a type of computing device that uses the continuous variation aspect of 

physical phenomena to model the problem being solved [1]. One special type of physical phenomena to 

model problems is considered below.  

The circular polarized electromagnetic waves following from the solution of Maxwell equations in free 

space done in geometric algebra terms, [2], [3], are the electromagnetic fields of the form: 

 𝐹 = 𝐹0𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘 ∙ 𝑟)] (1.1) 

which should be solution of  

          (𝜕𝑡 + ∇)𝐹 = 0                 (1.2) 

Solution of (1.2) must be the sum of a vector (electric field 𝑒) and bivector (magnetic field 𝐼3ℎ): 

𝐹 = 𝑒 + 𝐼3ℎ 

with some initial conditions: 

𝑒 + 𝐼3ℎ|𝑡=0,𝑟=0 = 𝐹0 = 𝑒|𝑡=0,𝑟=0 + 𝐼3ℎ|𝑡=0,𝑟=0 = 𝑒0 + 𝐼3ℎ0 

For a given plane 𝑆 in (1.1), the solution of three-dimensional Maxwell equation (1.2) has two options:  

• 𝐹+ = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘+ ∙ 𝑟)] , with �̂�+ = 𝐼3𝐼𝑆, �̂�ℎ̂�̂�+ = 𝐼3, and the triple {�̂�, ℎ̂, �̂�+} is right 

hand screw oriented, that’s rotation of �̂� to ℎ̂ by 𝜋 2⁄  gives movement of right hand screw in the 
direction of  𝑘+ = |𝑘|𝐼3𝐼𝑆; 

 
1Website: https://soiguine.com;  E-mail: alex@soiguine.com 

https://soiguine.com/


• 𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆(𝜔𝑡 − 𝑘− ∙ 𝑟)], with �̂�− = −𝐼3𝐼𝑆, �̂�ℎ̂�̂�− = −𝐼3, and the triple {�̂�, ℎ̂, �̂�−} is left 

hand screw oriented, that’s rotation of �̂� to ℎ̂ by 𝜋 2⁄  gives movement of left hand screw in the 
direction of  𝑘− = −|𝑘|𝐼3𝐼𝑆 or, equivalently, movement of right hand screw in the opposite direction, 
−𝑘−; 

where 𝑒0 and ℎ0, initial values of 𝑒 and ℎ, are arbitrary mutually orthogonal vectors of equal length, lying 

on the plane 𝑆. Vectors 𝑘± = ±|𝑘±|𝐼3𝐼𝑆 are normal to that plane. The length of the “wave vectors” |𝑘±| 

is equal to angular frequency  . 

Maxwell equation (1.2) is a linear one. Then any linear combination of 𝐹+ and 𝐹− saving the structure of 

(1.1) will also be a solution.  

Let’s write: 

{
𝐹+ = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 − (𝐼3𝐼𝑆) ∙ 𝑟)] = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[−𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟]]

𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔(𝑡 + (𝐼3𝐼𝑆) ∙ 𝑟)] = (𝑒0 + 𝐼3ℎ0)𝑒𝑥𝑝[𝐼𝑆𝜔𝑡]𝑒𝑥𝑝[𝐼𝑆[(𝐼3𝐼𝑆) ∙ 𝑟]]
                  (1.3) 

Then for arbitrary (real2) scalars 𝜆 and 𝜇: 

    𝜆𝐹+ + 𝜇𝐹− = (𝑒0 + 𝐼3ℎ0)𝑒
𝐼𝑆𝜔𝑡(𝜆𝑒−𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟] + 𝜇𝑒𝐼𝑆[(𝐼3𝐼𝑆)∙𝑟])               (1.4) 

is solution of (1.2). The item in the second parenthesis is weighted linear combination of two states 

(wave functions, g-qubits [4], [5])  with the same phase in the same plane but opposite sense of 

orientation. The states are strictly coupled, entangled if you prefer, because bivector plane should be the 

same for both, does not matter what happens with that plane. 

Arbitrary linear combination (1.4) can be rewritten as: 

𝜆𝑒𝐼𝑃𝑙𝑎𝑛𝑒
+ 𝜑+ + 𝜇𝑒𝐼𝑃𝑙𝑎𝑛𝑒

− 𝜑−                                (1.5), 

with  

𝜑± = cos−1 (
1

√2
cos𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])), 

𝐼𝑃𝑙𝑎𝑛𝑒
± = 𝐼𝑆

𝑠𝑖𝑛𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])

√1 + 𝑠𝑖𝑛2𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])
+𝐼𝐵0

𝑐𝑜𝑠𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])

√1 + 𝑠𝑖𝑛2𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])

+ 𝐼𝐸0
𝑠𝑖𝑛𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])

√1 + 𝑠𝑖𝑛2𝜔(𝑡 ∓ [(𝐼3𝐼𝑆) ∙ 𝑟])
 

The triple of unit value basis orthonormal bivectors {𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0} is comprised of the 𝐼𝑆 bivector, dual to 

the propagation direction vector; 𝐼𝐵0 is dual to initial vector of magnetic field; 𝐼𝐸0 is dual to initial vector 

of electric field. The expression (1.5) is linear combination of two geometric algebra states, g-qubits. 

Linear combination of the two equally weighted basic solutions of the Maxwell equation 𝐹+ and 𝐹−, 

𝜆𝐹+ + 𝜇𝐹− with 𝜆 = 𝜇 = 1 reads: 
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𝜆𝐹+ + 𝜇𝐹−|λ=μ=1 = 2cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] (
1

√2
cos𝜔𝑡 + 𝐼𝑆

1

√2
sin𝜔𝑡 + 𝐼𝐵0

1

√2
cos𝜔𝑡 + 𝐼𝐸0

1

√2
sin𝜔𝑡)      (1.6) 

where cos𝜑 =
1

√2
cos𝜔𝑡 and sin𝜑 =

1

√2
√1 + (sin𝜔𝑡)2. It can be written in standard exponential form 

cos𝜑 + sin𝜑 𝐼𝐵 = 𝑒
𝐼𝐵𝜑.3 

I will call such kind of g-qubits spreons (or sprefields) because they spread over the whole three-

dimensional space for all values of time and, particularly, instantly change under Clifford translations 

over the whole three-dimensional space for all values of time, along with the results of measurement of 

any observable. 

 

2. CUDA GPU simulation of the analog modeling computer 

Measurement is by definition the result of action of operator, namely state, wave function, written in the 

form of g-qubit (𝛼 + 𝐼𝑆𝛽) [5], on an observable 𝐶:  

(𝛼 − 𝐼𝑆𝛽)𝐶(𝛼 + 𝐼𝑆𝛽) = (𝛼 + 𝐼𝑆𝛽)̃ 𝐶(𝛼 + 𝐼𝑆𝛽) 

Take as first example the case of observable as a vector expanded in {𝐼3𝐼𝑆, 𝐼3𝐼𝐵0 , 𝐼3𝐼𝐸0} ≡ {𝑒1, 𝑒2, 𝑒3}, 

basis vectors dual to bivectors {𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0}: 

𝐶 = 𝑐1𝑒1 + 𝑐2𝑒2 + 𝑐3𝑒3 

Measure it with wave function (1.6): 

4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] [(
1

√2
cos𝜔𝑡 − 𝐼𝑆

1

√2
sin𝜔𝑡 −

𝐼𝐵0
1

√2
cos𝜔𝑡 − 𝐼𝐸0

1

√2
sin𝜔𝑡)] 𝐶 [(

1

√2
cos𝜔𝑡 + 𝐼𝑆

1

√2
sin𝜔𝑡 + 𝐼𝐵0

1

√2
cos𝜔𝑡 +

1

√2
𝐼𝐸0sin𝜔𝑡)] =

2𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟][(cos𝜔𝑡 − 𝐼𝑆 sin𝜔𝑡 − 𝐼𝐵0 cos𝜔𝑡 − 𝐼𝐸0 sin𝜔𝑡)](𝑐1𝐼3𝐼𝑆 + 𝑐2𝐼3𝐼𝐵0 +

𝑐3𝐼3𝐼𝐸0)[(cos𝜔𝑡 + 𝐼𝑆 sin𝜔𝑡 + 𝐼𝐵0 cos𝜔𝑡 + 𝐼𝐸0 sin𝜔𝑡)]  

The result is: 

4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟][𝑐3𝑒1 + (𝑐1 sin 2𝜔𝑡 + 𝑐2 cos 2𝜔𝑡)𝑒2 + (𝑐2 sin 2𝜔𝑡 − 𝑐1 cos 2𝜔𝑡)𝑒3]                   (2.1) 

Geometrically that means that the measured vector is rotated by 
𝜋

2
 in the 𝐼𝐵0 plane, such that the 𝑐3𝑒3 

component becomes orthogonal to plane 𝐼𝑆 and remains unchanged. Two other vector components 

became orthogonal to 𝐼𝐵0 and 𝐼𝐸0and continue rotating in 𝐼𝑆 with angular velocity 2𝜔𝑡. The factor 

4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] defines the dependency of that transformed vector values through all points of the 

three-dimensional space. 

Similar example of measurement is that of the g-qubit type observable 𝐶0 + 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3 

(actually Hopf fibration) by a state 𝛼 + 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽3𝐵3 [4]: 

 
3 Good to remember that the two basic solutions 𝐹+ and 𝐹− differ only by the sign of 𝐼3𝐼𝑆, which is caused by orientation of 𝐼𝑆 

that in its turn defines if the triple {�̂�, �̂�, ±𝐼3𝐼𝑆}  is right-hand screw or left-hand screw oriented. 



𝐶0 + 𝐶1𝐵1 + 𝐶2𝐵2 + 𝐶3𝐵3
𝛼+𝛽1𝐵1+𝛽2𝐵2+𝛽3𝐵3
→               𝐶0

+ (𝐶1[(𝛼
2 + 𝛽1

2) − (𝛽2
2 + 𝛽3

2)] + 2𝐶2(𝛽1𝛽2 − 𝛼𝛽3) + 2𝐶3(𝛼𝛽2 + 𝛽1𝛽3))𝐵1

+ (2𝐶1(𝛼𝛽3 + 𝛽1𝛽2) + 𝐶2[(𝛼
2 + 𝛽2

2) − (𝛽1
2 + 𝛽3

2)] + 2𝐶3(𝛽2𝛽3 − 𝛼𝛽1))𝐵2

+ (2𝐶1(𝛽1𝛽3 − 𝛼𝛽2) + 2𝐶2(𝛼𝛽1 + 𝛽2𝛽3) + 𝐶3[(𝛼
2 + 𝛽3

2) − (𝛽1
2 + 𝛽2

2)])𝐵3 

with: 

𝐵1 = 𝐼𝑆, 𝐵2 = 𝐼𝐵0, 𝐵3 = 𝐼𝐸0, 𝛼 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
cos𝜔𝑡, 𝛽1 = 2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]

1

√2
sin𝜔𝑡, 𝛽2 =

2cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]
1

√2
cos𝜔𝑡, 𝛽3 = 2cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]

1

√2
sin𝜔𝑡 

gives a 𝐺3
+ element spreading through the three-dimensional space for all values of time parameter 𝑡: 

4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟][𝐶0 + 𝐶3𝐼𝑆 + (𝐶1 sin2𝜔𝑡 + 𝐶3 cos 2𝜔𝑡)𝐼𝐵0 + (𝐶2 sin 2𝜔𝑡 − 𝐶1 cos2𝜔𝑡)𝐼𝐸0]      (2.2) 

The current approach transcends common quantum computing schemes since the latter are principally 

based on qubit entanglement (whatever it is) and thus have tough problems of creating large sets of 

entangled qubits. In the current scheme any test observable can be placed anywhere into continuum of 

the (𝑡, 𝑟) dependent values of the spreon state. The above formulas (2.1) and (2.2) give the results of 

measurements simultaneously for all points (𝑡, 𝑟).  

The sprefield hardware requires special implementation as a photonic/laser device that does not exist 

yet. Instead, we have a very convenient equivalent simulation scheme where the amount of 

simultaneously available space/time points of observable measured values is only restricted by the 

overall available Nvidia GPU number of threads. 

Consider the case of measuring a vector when the three parallel calculated measured by the sprefield 

vector components 4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟]𝑐3, 4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟](𝑐1 sin2𝜔𝑡 + 𝑐2 cos 2𝜔𝑡) and 

4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ∙ 𝑟](𝑐2 sin2𝜔𝑡 − 𝑐1 cos 2𝜔𝑡) are processed using the following fragments of  CUDA code: 

uint width = 512, height = 512;  //optional  
dim3 blockSize(16, 16);   //optional  

__global__ void quantKernel(float3* output, int dimx, int dimy, int dimz, float t) 
{ 
 
   float c1 = 1.0;                                                          //components of observable vector 
   float c2 = 1.0;      
   float c3 = 1.0;  
     
   float omega = 12560000.0;   // possible angular velocity in the sprefield 

   float tstep = 1.0f; 
 
  float factor = 0.0; 
 
    int qidx = threadIdx.x + blockIdx.x * blockDim.x; 
    int qidy = threadIdx.y + blockIdx.y * blockDim.y; 
    int qidz = threadIdx.z + blockIdx.z * blockDim.z; 



 
   size_t oidx = qidx + qidy*dimx + qidz*dimx*dimy; 
   
  output[oidx][0] = oidx*tstep; 
  factor =4*(cosf(omega * output[oidx][0])) * (cosf(omega * output[oidx][0])); 
  output[oidx][0] += factor * c3; 
  output[oidx][1] = oidx*tstep; 
  output[oidx][1] += factor * (𝑐1 sin(2 ∗ omega ∗ 𝑡) + 𝑐2 cos(2 ∗ omega ∗ 𝑡)); 
  output[oidx][2] = oidx*tstep; 
  output[oidx][2] += factor * (𝑐2 sin(2 ∗ omega ∗ 𝑡)−𝑐1 cos(2 ∗ omega ∗ 𝑡)); 
} 
 
template<typename T> 
void init(char * devPtr, size_t pitch, int width, int height, int depth) 
{ 
    size_t qPitch = pitch * height; 
    int v = 0; 
    for (int z = 0; z < depth; ++z) { 
        char * slice = devPtr + z * qPitch;; 
        for (int y = 0; y < height; ++y) { 
            T * row = (T *)(slice + y * pitch); 
            for (int x = 0; x < width; ++x) { 
                row[x] = T(v++); 
            } 
        } 
    } 
 
int keyboard(unsigned char key) 
{ 
    switch (key) 
    { 
        case (27) : 
                              cudaFree(d_output); 
                              free(h_output); 
                              return 1; 
                              break; 
                   default: 
                   break; 
               
    } 
} 
 
int main(void) 
{ 
    VolumeType *h_volumeMem; 
    unsigned char key; 
    __device__ float g_fAnim = 0.0; 
 
    float3* h_output = (float3*)malloc(size * sizeof(float3)); //array for measured vector 

//observable values 



   float3* d_output = NULL; 

    checkCudaErrors( 
      cudaMalloc((void **)&d_output, width * height * sizeof(float3))); 
    checkCudaErrors(cudaMemset(d_output, 0, width * height * sizeof(float3))); 

    cudaExtent volumeSizeBytes = make_cudaExtent(width, SIZE_Y, SIZE_Z); 
    cudaPitchedPtr d_volumeMem;  
    checkCudaErrors (cudaMalloc3D(&d_volumeMem, volumeSizeBytes)); 
 
    size_t size = d_volumeMem.pitch * SIZE_Y * SIZE_Z; 
    h_volumeMem = (VolumeType *)malloc(size); 
    init<VolumeType>((char *)h_volumeMem, d_volumeMem.pitch, SIZE_X, SIZE_Y, SIZE_Z); 
    checkCudaErrors (cudaMemcpy(d_volumeMem.ptr, h_volumeMem, size, 
cudaMemcpyHostToDevice)); 
            
    cudaArray * d_volumeArray; 
    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<VolumeType>(); 
    cudaExtent volumeSize = make_cudaExtent(SIZE_X, SIZE_Y, SIZE_Z); 
    checkCudaErrors ( cudaMalloc3DArray(&d_volumeArray, &channelDesc, volumeSize) );  
 
    cudaMemcpy3DParms copyParams = {0}; 
    copyParams.srcPtr = d_volumeMem; 
    copyParams.dstArray = d_volumeArray; 
    copyParams.extent = volumeSize; 
    copyParams.kind = cudaMemcpyDeviceToDevice; 
    checkCudaErrors ( cudaMemcpy3D(&copyParams) );  
    while(1) 
   { 
          g_fAnim += 0.01f; 
          quantKernel<<<1,dim3(4,4,4)>>>(d_output,4,4,4, g_fAnim); 
          cudaError_t error = cudaGetLastError(); 
 
          checkCudaErrors (cudaMemcpy(h_output, d_output, osize, cudaMemcpyDeviceToHost)); 
          if (keyboard(key)==1) 
 exit(error); 
   } 
 
    return error; 
} 
 

The GPU CUDA case of simulation of measurement of a g-qubit type of observable only differs in 

quantKernel GPU executed function: 

__global__ void quantKernel(float4* output, int dimx, int dimy, int dimz, float t) 
{ 
 
    float c1 = 1.0 
    float c2 = 1.0;      
    float c3 = 1.0;      



   float omega = 12560000.0;   // variant of angular velocity in the sprefield 

   float tstep = 1.0f; 
 
  float factor = 0.0; 
 
    int qidx = threadIdx.x + blockIdx.x * blockDim.x; 
    int qidy = threadIdx.y + blockIdx.y * blockDim.y; 
    int qidz = threadIdx.z + blockIdx.z * blockDim.z; 
 
    size_t oidx = qidx + qidy*dimx + qidz*dimx*dimy; 
   
  output[oidx][0] = oidx*tstep; 
  factor =4*(cosf(omega * output[oidx][0])) * (cosf(omega * output[oidx][0])); 
  output[oidx][0] += factor * c3; 
  output[oidx][1] = oidx*tstep; 
  output[oidx][1] += factor * (𝑐1 sin(2 ∗ omega ∗ 𝑡) + 𝑐2 cos(2 ∗ omega ∗ 𝑡)); 
  output[oidx][2] = oidx*tstep; 
  output[oidx][2] += factor * (𝑐2 sin(2 ∗ omega ∗ 𝑡)−𝑐1 cos(2 ∗ omega ∗ 𝑡)); 
  output[oidx][3] = factor; 
} 
 
More flexibility in measurements can be achieved by scattering of the sprefield wave function before 
applying to observables. 
 

Arbitrary Clifford translation 𝑒𝐼𝐵𝐶𝛾 = cos 𝛾 + sin 𝛾(𝛾1𝐼𝑆 + 𝛾2𝐼𝐵0 + 𝛾3𝐼𝐸0)  acting on spreons (1.6) gives: 

2 cos𝜔[(𝐼3𝐼𝑆) ∙ 𝑟] [
1

√2
(cos 𝛾 cos𝜔𝑡 −𝛾1 sin 𝛾 sin𝜔𝑡 − 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡) +

1

√2
(cos 𝛾 sin𝜔𝑡 + 𝛾1 sin 𝛾 cos𝜔𝑡 −𝛾2 sin 𝛾 sin𝜔𝑡 + 𝛾3 sin 𝛾 cos𝜔𝑡)𝐼𝑆 +

1

√2
(cos 𝛾 cos𝜔𝑡+𝛾1 sin 𝛾 sin𝜔𝑡 + 𝛾2 sin 𝛾 cos𝜔𝑡 − 𝛾3 sin 𝛾 sin𝜔𝑡)𝐼𝐵0 +

1

√2
(cos 𝛾 sin𝜔𝑡−𝛾1 sin 𝛾 cos𝜔𝑡 + 𝛾2 sin 𝛾 sin𝜔𝑡 + 𝛾3 sin 𝛾 cos𝜔𝑡)𝐼𝐸0]                (2.3) 

This result is defined for all values of 𝑡 and 𝑟, in other words the result of Clifford translation instantly 

spreads through the whole three-dimensions for all values of time. 

The instant of time when the Clifford translation was applied makes no difference for the state (2.3) 

because it is simultaneously redefined for all values of 𝑡. The values of measurements 

𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟) also get instantly changed for all values of time of 

measurement, even if the Clifford translation was applied later than the measurement. That is an 

obvious demonstration that the suggested theory allows indefinite event casual order. In that way the 

very notion of the concept of cause and effect, ordered by time value increasing, disappears.  

Since general result of measurement when Clifford translation takes place in an arbitrary plane is pretty 

complicated, I am only giving the result for the special case 𝛾1 = 1 and 𝛾2 = 𝛾3 = 0 (Clifford translation 

acts in plane 𝐼𝑆). The result is: 



𝑂(𝐶0, 𝐶1, 𝐶2, 𝐶3, 𝐼𝑆, 𝐼𝐵0 , 𝐼𝐸0 , 𝛾, 𝛾1, 𝛾2, 𝛾3, 𝜔, 𝑡, 𝑟)𝛾1=1,𝛾2=𝛾3=0 

= 4𝑐𝑜𝑠2𝜔[(𝐼3𝐼𝑆) ⋅ 𝑟][𝐶0 + (𝐶2 𝑠𝑖𝑛 2𝛾 + 𝐶3 𝑐𝑜𝑠 2𝛾)𝐼𝑆
+ (𝐶1 𝑠𝑖𝑛 2𝜔𝑡 + 𝑠𝑖𝑛 2𝛾 𝑐𝑜𝑠 2𝜔𝑡 (𝐶2 + 𝐶3))𝐼𝐵0
+ (−𝐶1 𝑐𝑜𝑠 2𝜔𝑡 + 𝑠𝑖𝑛 2𝛾 𝑠𝑖𝑛 2𝜔𝑡 (𝐶2 − 𝐶3))𝐼𝐸0] 

The only component of measurement, namely the one lying in plane 𝐼𝑆, does not change with time. The 

𝐼𝐵0 and 𝐼𝐸0 components do depend on the time of measurement being modified forward and backward 

in time if Clifford translation is applied. Clifford translation modifies measurement results of the past and 

the future.  

 

3. Conclusions 

In the suggested theory all measured observable values get available all together, not through looking 
one by one. In this way quantum computer appeared to be a kind of analog computer keeping and 
instantly processing information by and on sets of objects possessing an infinite number of degrees of 
freedom. The multithread GPUs bearing the CUDA language functionality allow to simultaneously 
calculate observable measurement values at a number of space/time discrete points, forward and 
backward in time, the number only restricted by the GPU threads capacity. That eliminates the tough 
hardware problem of creating huge and stable arrays of qubits, the base of quantum computing in 
conventional approaches.  
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